Publications Google Scholar
Please see my latest updates at ☝️
Publications and Preprints (By Year)
2025
C. Cheng, J. Duchi. “Some Robustness Properties of Label Cleaning”, 2025.
arXiv
M. Celentano, C. Cheng, A. Pananjady, K.A. Verchand. “State evolution beyond first-order methods I: Rigorous predictions and finite-sample guarantees”, 2025.
arXiv
2024
C. Cheng, J. Duchi, D. Levy. “Geometry, Computation, and Optimality in Stochastic Optimization”, 2024.
arXiv
F. Areces, C. Cheng, J. Duchi, R. Kuditipudi. “Two Fundamental Limits for Uncertainty Quantification in Predictive Inference”, 2024. Proceedings of the Thirty-Seventh Conference on Learning Theory (COLT 2025).
conference
2023
C. Cheng, G. Cheng, J. Duchi. “Collaboratively Learning Linear Models with Structured Missing Data”, 2023. Advances in Neural Information Processing Systems (NeurIPS 2023).
arXiv
conference
C. Cheng, A. Montanari. “Dimension Free Ridge Regression”, 2023. The Annals of Statistics, Vol. 52, No. 6, pp. 2879–2912, 2024.
arXiv
journal
2022
C. Cheng, H. Asi, J. Duchi. “How Many Labelers Do You Have? A Closer Look at Gold-Standard Labels”, 2022.
arXiv
C. Cheng, J. Duchi, R. Kuditipudi. “Memorize to Generalize: on the Necessity of Interpolation in High Dimensional Linear Regression”, 2022. Proceedings of the Thirty-Fifth Conference on Learning Theory (COLT 2022).
arXiv
conference
2021
- M. Celentano, C. Cheng, A. Montanari. “The High-dimensional Asymptotics of First Order Methods with Random Data”, 2021.
arXiv
2020
S. Cen, C. Cheng, Y. Chen, Y. Wei, Y. Chi. “Fast Global Convergence of Natural Policy Gradient Methods with Entropy Regularization”, 2020. Operations Research, Vol. 69, No. 6, pp. 1716–1731, 2021.
arXiv
journal
C. Cheng, Y. Wei, Y. Chen. “Tackling Small Eigen-gaps: Fine-Grained Eigenvector Estimation and Inference under Heteroscedastic Noise”, 2020. IEEE Transactions on Information Theory, Vol. 67, No. 12, pp. 8152–8194, 2021.
arXiv
journal
2019
- Y. Chen, C. Cheng, J. Fan. “Asymmetry Helps: Eigenvalue and Eigenvector Analyses of Asymmetrically Perturbed Low-Rank Matrices”, 2019. The Annals of Statistics, Vol. 49, No. 1, pp. 435–458, 2021.
arXiv
journal
Thesis
“High dimensionality in modern machine learning: a random matrix theory perspective”.
Stanford University ProQuest Dissertations & Theses. 2025.